- 0 resultaten
laagste prijs: € 95,45, hoogste prijs: € 149,99, gemiddelde prijs: € 126,12
1
bestellen
bij booklooker.de
€ 95,45
verzending: € 0,00
bestellen
Gesponsorde link
Ibragimov, Nail H.:

Transformation Groups Applied to Mathematical Physics - gebonden uitgave, pocketboek

ISBN: 9789027718471

[ED: Hardcover], [PU: Springer Netherlands], Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't se… Meer...

Verzendingskosten:Versandkostenfrei, Versand nach Deutschland. (EUR 0.00) buecher.de GmbH & Co. KG
2
Transformation Groups Applied to Mathematical Physics N.H. Ibragimov Author
bestellen
bij BarnesandNoble.com
€ 149,99
bestellen
Gesponsorde link
Transformation Groups Applied to Mathematical Physics N.H. Ibragimov Author - nieuw boek

ISBN: 9789027718471

Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find… Meer...

new in stock. Verzendingskosten:zzgl. Versandkosten., exclusief verzendingskosten
3
Transformation Groups Applied to Mathematical Physics - N.H. Ibragimov
bestellen
bij Springer.com
€ 128,39
verzending: € 0,00
bestellen
Gesponsorde link
N.H. Ibragimov:
Transformation Groups Applied to Mathematical Physics - gebonden uitgave, pocketboek

ISBN: 9789027718471

Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then It is that they can't see the problem. one day, perhaps you will find… Meer...

new in stock. Verzendingskosten:zzgl. Versandkosten. (EUR 0.00)
4
Transformation Groups Applied to Mathematical Physics - Ibragimov, N. H.
bestellen
bij Achtung-Buecher.de
€ 128,39
verzending: € 0,00
bestellen
Gesponsorde link
Ibragimov, N. H.:
Transformation Groups Applied to Mathematical Physics - gebonden uitgave, pocketboek

1984, ISBN: 9027718474

1985 Gebundene Ausgabe Mathematische Physik, CON_D005, mit Schutzumschlag 11, [PU:Springer Netherlands; Springer Netherland]

Verzendingskosten:Versandkostenfrei innerhalb der BRD. (EUR 0.00) MARZIES.de Buch- und Medienhandel, 14621 Schönwalde-Glien
5
Transformation Groups Applied to Mathematical Physics - N.H. Ibragimov
bestellen
bij lehmanns.de
€ 128,39
verzending: € 0,00
bestellen
Gesponsorde link
N.H. Ibragimov:
Transformation Groups Applied to Mathematical Physics - gebonden uitgave, pocketboek

1984, ISBN: 9789027718471

Buch, Hardcover, 1985 ed. [PU: Kluwer Academic Publishers], Kluwer Academic Publishers, 1984

Verzendingskosten:Versand in 10-14 Tagen. (EUR 0.00)

Bijzonderheden over het boek

Gedetalleerde informatie over het boek. - Transformation Groups Applied to Mathematical Physics


EAN (ISBN-13): 9789027718471
ISBN (ISBN-10): 9027718474
Gebonden uitgave
Verschijningsjaar: 1984
Uitgever: Kluwer Academic Publishers
414 Bladzijden
Gewicht: 0,783 kg
Taal: eng/Englisch

Boek bevindt zich in het datenbestand sinds 2007-04-15T16:22:11+02:00 (Amsterdam)
Detailpagina laatst gewijzigd op 2021-11-09T13:48:18+01:00 (Amsterdam)
ISBN/EAN: 9027718474

ISBN - alternatieve schrijfwijzen:
90-277-1847-4, 978-90-277-1847-1


Gegevens van de uitgever

Auteur: N.H. Ibragimov
Titel: Mathematics and its Applications; Transformation Groups Applied to Mathematical Physics - Soviet Series
Uitgeverij: Springer; Springer Netherland
394 Bladzijden
Verschijningsjaar: 1984-12-31
Dordrecht; NL
Gewicht: 1,670 kg
Taal: Engels
128,39 € (DE)
131,99 € (AT)
141,50 CHF (CH)
POD

BB; Book; Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika; Mathematische Physik; Verstehen; CON_D005; B; Theoretical, Mathematical and Computational Physics; Group Theory and Generalizations; Theoretical, Mathematical and Computational Physics; Group Theory and Generalizations; Mathematics and Statistics; Gruppen und Gruppentheorie; BC; EA

I: Point Transformations.- Introductory Chapter: Group and Differential Equations.- § 1. Continuous groups.- 1.1 Topological groups.- 1.2 Lie groups.- 1.3 Local groups.- 1.4 Local Lie groups.- § 2. Lie algebras.- 2.1 Definitions.- 2.2 Lie algebras and local Lie groups.- 2.3 Inner automorphisms.- 2.4 The Levi-Mal’cev theorem.- § 3. Transformation groups.- 3.1 Local transformation groups.- 3.2 Lie’s equation.- 3.3 Invariants.- 3.4 Invariant manifolds.- § 4. Invariant differential equations.- 4.1 Prolongation of point transformations.- 4.2 The defining equation.- 4.3 Invariant and partially invariant solutions.- 4.4 The method of invariant majorants.- § 5. Examples.- 5.1 Let x ? ?n, a ? ?.- 5.2 Let us illustrate the algorithm for computing the group admitted by a differential equation by means of the example of a second-order equation.- 5.3 The Korteweg-de Vries equation.- 5.4 Consider the equation of motion of a polytropic gas.- 1: Motions in Riemannian Spaces.- § 6. The general group of motions.- 6.1 Local Riemannian manifolds.- 6.2 Arbitrary motions in Vn.- 6.3 The defect of a group of motions in Vn.- 6.4 Invariant family of spaces.- § 7. Examples of motions.- 7.1 Isometries.- 7.2 Conformal motions.- 7.3 Motions with ? = 2.- 7.4 Nonconformal motions with ? = 1.- 7.5 Motions with given invariants.- § 8. Riemannian spaces with nontrivial conformal group.- 8.1 Conformally related spaces.- 8.2 Spaces of constant curvature.- 8.3 Conformally-flat spaces.- 8.4 Spaces with definite metric.- 8.5 Lorentzian spaces.- § 9. Group analysis of Einstein’s equations.- 9.1 Harmonic coordinates.- 9.2 The group admitted by Einstein’s equations.- 9.3 The Lie-Vessiot decomposition.- 9.4 Exact solutions.- § 10. Conformally-invariant equations of second order.- 10.1 Preliminaries.- 10.2 Linear equations in Sn.- 10.3 Semilinear equations in Sn.- 10.4 Equations admitting an isometry group of maximal order.- 10.5 The wave equation in Lorentzian spaces.- 2: A Group-Theoretical Approach to the Huygens Principle.- § 11. General considerations and some history of the problem.- 11.1 Hadamard’s problem.- 11.2 Hadamard’s criterion.- 11.3 The Mathisson-Asgeirsson Theorem.- 11.4 The necessary conditions of Günther and McLenaghan.- 11.5 The Lagnese-Stellmacher transformation.- 11.6 The present state of the art and generalizations of Hadamard’s problem.- § 12. The wave equation in V4.- 12.1 Computation of the geodesic distance in a plane-wave metric.- 12.2 Conformal invariance and the Huygens principle.- 12.3 The solution of the Cauchy problem.- 12.4 The case of a trivial conformal group.- § 13. The Huygens principle in Vn+1.- 13.1 Preliminary analysis of the solution.- 13.2 The Fourier transform of the Bessel function J0(a|?|).- 13.3 The descent method. Representation of solution for arbitrary n.- 13.4 Summary of the Huygens principle.- 13.5 Failure of the connection between Huygens’ principle and conformal invariance.- II: Tangent Transformations.- 3: Introduction to the Theory of Lie-Bäcklund Groups.- § 14. Heuristic considerations.- 14.1 Contact transformations.- 14.2 Finite-order tangent transformations.- 14.3 Bianchi-Lie transformation.- 14.4 Bäcklund transformations. Examples.- 14.5 The concept of infinite-order tangent transformation.- § 15. Formal groups.- 15.1 Lie’s equation for formal one-parameter groups.- 15.2 Invariants and invariant manifolds.- § 16. One-parameter groups of Lie-Bäcklund transformations.- 16.1 Definition and the infinitesimal criterion.- 16.2 Lie-Bäcklund operators. Canonical operators.- 16.3 Examples.- § 17. Invariant differential manifolds.- 17.1 A criterion of invariance.- 17.2 Examples of solutions of the defining equation.- 17.3 Ordinary differential equations.- 17.4 The isomorphism theorem.- 17.5 Linearization by means of Lie-Bäcklund transformations.- 4: Equations with Infinite Lie-Bäcklund Groups.- § 18. Typical examples.- 18.1 The heat equation.- 18.2 The Korteweg-de Vries equation.- 18.3 A fifth-order equation.- 18.4 The wave equation.- § 19. Evolution equations.- 19.1 The algebra AF.- 19.2 The Faà de Bruno formula.- 19.3 The algebra LF.- 19.4 Differential substitutions.- 19.5 Equivalence transformations defined by ordinary differential equations.- § 20. Analysis of second- and third-order evolution equations.- 20.1 m = 2.- 20.2 m = 3.- 20.3 Two systems of nonlinear equations.- § 21. The equation F(x,y,z,p,q,r,s,t) = 0.- 21.1 Analysis of the general case.- 21.2 Classification of the equations s = F(z).- 21.3 A system of two nonlinear equations.- 5: Conservation Laws.- § 22. Fundamental theorems.- 22.1 The Noether identity.- 22.2 The Noether theorem.- 22.3 Invariance on the extremals.- 22.4 The action of the adjoint algebra.- 22.5 First integrals of evolution equations.- § 23. Examples.- 23.1 Motion in de Sitter space.- 23.2 The equation utt + ?2u = 0.- 23.3 The non-steady-state transonic gas flow.- 23.4 Short waves.- § 24. The Lorentz group.- 24.1 Conservation laws in relativistic mechanics.- 24.2 A nonlinear wave equation.- 24.3 Dirac equation.- § 25. The Galilean group.- 25.1 Motion of a particle.- 25.2 Perfect gas.- 25.3 Incompressible fluid.- 25.4 Shallow-water flow.- 25.5 A basis of conservation laws for the K-dV equation.- References.

Andere boeken die eventueel grote overeenkomsten met dit boek kunnen hebben:

Laatste soortgelijke boek:
9781402003394 Transformation Groups Applied to Mathematical Physics (N.H. Ibragimov)


< naar Archief...