
ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer Netherlands], ALGEBRA; ALGEBRAICGEOMETRY; COMMUTATIVEALGEBRA; HOMOMORPHISM; LINEARALGEBRA; MATRICES; MATRIX; QUADRATICFORM, Druck auf Anfrage … Meer...
AbeBooks.de AHA-BUCH GmbH, Einbeck, Germany [51283250] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) Details... |

1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer Netherlands], ALGEBRA; ALGEBRAICGEOMETRY; COMMUTATIVEALGEBRA; HOMOMORPHISM; LINEARALGEBRA; MATRICES; MATRIX; QUADRATICFORM, Druck auf Anfrage … Meer...
AbeBooks.de AHA-BUCH GmbH, Einbeck, Germany [51283250] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) Details... |
1985, ISBN: 9789027721129
Buch, Hardcover, 1985 ed. When looking for applications of ring theory in geometry, one first thinks of algebraic geometry, which sometimes may even be interpreted as the concrete side of… Meer...
lehmanns.de Verzendingskosten:Versand in 10-14 Tagen. (EUR 0.00) Details... |

1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. When looking for applications of ring theory in geometry, one first thinks of algebraic geom… Meer...
AbeBooks.de The Book Depository, London, United Kingdom [54837791] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten: EUR 0.60 Details... |

1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. When looking for applications of ring theory in geometry, one first thinks of algebraic geom… Meer...
AbeBooks.de Book Depository hard to find, London, United Kingdom [63688905] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) Details... |

ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer Netherlands], ALGEBRA; ALGEBRAICGEOMETRY; COMMUTATIVEALGEBRA; HOMOMORPHISM; LINEARALGEBRA; MATRICES; MATRIX; QUADRATICFORM, Druck auf Anfrage … Meer...

1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer Netherlands], ALGEBRA; ALGEBRAICGEOMETRY; COMMUTATIVEALGEBRA; HOMOMORPHISM; LINEARALGEBRA; MATRICES; MATRIX; QUADRATICFORM, Druck auf Anfrage … Meer...
1985
ISBN: 9789027721129
Buch, Hardcover, 1985 ed. When looking for applications of ring theory in geometry, one first thinks of algebraic geometry, which sometimes may even be interpreted as the concrete side of… Meer...
1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. When looking for applications of ring theory in geometry, one first thinks of algebraic geom… Meer...
1985, ISBN: 9027721122
[EAN: 9789027721129], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. When looking for applications of ring theory in geometry, one first thinks of algebraic geom… Meer...
Bibliografische gegevens van het best passende boek
auteur: | |
Titel: | |
ISBN: |
Gedetalleerde informatie over het boek. - Rings and Geometry
EAN (ISBN-13): 9789027721129
ISBN (ISBN-10): 9027721122
Gebonden uitgave
Verschijningsjaar: 1985
Uitgever: Kluwer Academic Publishers
584 Bladzijden
Gewicht: 1,029 kg
Taal: eng/Englisch
Boek bevindt zich in het datenbestand sinds 2007-06-06T11:12:10+02:00 (Amsterdam)
Detailpagina laatst gewijzigd op 2022-03-14T13:13:41+01:00 (Amsterdam)
ISBN/EAN: 9027721122
ISBN - alternatieve schrijfwijzen:
90-277-2112-2, 978-90-277-2112-9
alternatieve schrijfwijzen en verwante zoekwoorden:
Auteur van het boek: plaumann, plaum, rustem, rüstem, karl strambach, karl peter
Titel van het boek: rings geometry, nato asi series, rings around
Gegevens van de uitgever
Auteur: R. Kaya; P. Plaumann; K. Strambach
Titel: Nato Science Series C:; Rings and Geometry
Uitgeverij: Springer; Springer Netherland
568 Bladzijden
Verschijningsjaar: 1985-09-30
Dordrecht; NL
Gewicht: 2,180 kg
Taal: Engels
320,99 € (DE)
329,99 € (AT)
354,00 CHF (CH)
POD
XII, 568 p.
BB; Algebra; Hardcover, Softcover / Mathematik/Arithmetik, Algebra; Algebra; Verstehen; algebra; algebraic geometry; commutative algebra; homomorphism; linear algebra; matrices; matrix; quadratic form; Algebra; BC; BC; EA
I: Non-Commutative Algebraic Geometry.- Principles of non-commutative algebraic geometry.- § 1 Free algebras and free fields.- § 2 Specializations and the rational topology.- § 3 Singularities of matrices over a free ring.- § 4 Existentially closed fields and the Nullstellensatz.- Applications of results on generalized polynomial identities in Desarguesian projective spaces.- § 1 Introduction.- § 2 Non-degenerate normal curves.- § 3 Degenerate conics.- § 4 Degenerate normal curves.- II: Hjelmslev Geometries.- A topological characterization of Hjelmslev’s classical geometries.- § 1 Hjelmslev planes and Hjelmslev rings.- § 2 Construction of commutative H-rings.- § 3 The geometric significance of nilpotent radicals.- § 4 Topological Hjelmslev planes.- § 5 Locally compact H-planes.- § 6 Characterizations of commutative H-rings with nilpotent radicals.- § 7 Locally compact connected pappian Hjelmslev planes.- Finite Hjelmslev planes and Klingenberg epimorphisms.- § 1 K-structures and H-structures.- § 2 Nets and non-existence results for K-structures.- § 3 Nets and non-existence results for H-structures.- § 4 Desarguesian K-planes.- § 5 Auxiliary matrices.- § 6 Quadratic forms and a PH-plane with q2 ? q1.- § 7 Regular K-structures.- § 8 Generalizations of Singer’s theorem and a recursive construction.- § 9 Eumorphisms of regular K-structures.- § 10 Balanced H-matrices.- § 11 Recursive constructions.- § 12 Open problems.- III: Geometries over Alternative Rings.- Generalizing the Moufang plane.- § 1 Inhomogeneous and homogeneous coordinates.- § 2 Collineations of real projective planes.- § 3 The real projective plane P( IR ) as a homogeneous space.- § 4 Abstract projective planes.- § 5 A Jordan algebra construction of projective planes.- § 6 The Hjelmslev-Moufang plane.- § 7 Algebraic transvections in P(O).- § 8 Axiomatization and coordinatization of P(O).- § 9 P(O) as homogeneous space.- § 10 Another realization of ?.- § 11 Jordan pairs — a final look at the Hjelmslev-Moufang plane.- § 12 Abstract Moufang-Veldkamp planes.- Projective ring planes and their homomorphisms.- A. Algebraic preliminaries.- § 1 Free modules and their subspaces.- § 2 Stable rank of a ring.- B. Projective ring planes.- § 3 The projective plane over a ring of stable rank 2.- § 4 Barbilian planes.- § 5 Collineations and affine collineations.- § 6 Barbilian transvection planes.- § 7 Projective ring planes.- § 8 Coordinatization of projective ring planes.- § 9 Projective planes over special types of rings.- C. Homomorphisms of projective ring planes.- § 10 Homomorphisms of Barbilian planes.- § 11 Distant-preserving homomorphisms.- § 12 Algebraic characterization of full incidence homomorphisms.- § 13 Full neighbor-preserving homomorphisms.- § 14 Admissible subrings.- IV: Metric Ring Geometries, Linear Groups over Rings and Coordinatization.- Topics in geometric algebra over rings.- § 1 Collineations between projective spaces.- § 2 Collineations between lines.- § 3 Non-injective maps which preserve generalized harmonic quadruples.- § 4 The structure of GLn(R).- Metric geometry over local-global commutative rings.- § 1 LG-rings.- § 2 Linear algebra.- § 3 GL (2).- § 4 Inner_product spaces and the orthogonal group.- § 5 Witt rings.- § 6 The symplectic and unitary groups.- Linear mappings of matrix rings preserving invariants.- § 1 Introduction.- § 2 The linear algebraic approach of McDonald, Marcus, and Moyls.- § 3 The group scheme approach of Waterhouse.- § 4 Concluding remarks.- Kinematic algebras and their geometries.- § 1 Motivation and historical review.- § 2 Problems resulting from classical kinematics; a survey of the material covered in this paper.- § 3 2-algebras.- § 4 Alternative kinematic algebras.- § 5 Geometric derivations of 2-algebras.- § 6 2-algebras whose projective derivation is an affine porous space.- § 7 The kinematic derivation of an alternative kinematic algebra. Representation theorem.- § 8 Kinematic algebras with an adjoint map. The general notation of a kinematic map.- § 9 Kustaanheimo’s kinematic model of the hyperbolic space.- Coordinatization of lattices.- § 1 Introduction.- § 2 Basic definitions and notations.- § 3 The axioms and formulation of the coordinatization theorem.- § 4 Lemmata.- § 5 Proof of the coordinatization theorem.- § 6 A different approach.- § 7 The independence of the axioms.- Epilog.- The advantage of geometric concepts in mathematics.- Index of Subjects.Proceedings of the NATO Advanced Study Institute, Istanbul, Turkey, September 2-14, 1984
Andere boeken die eventueel grote overeenkomsten met dit boek kunnen hebben:
Laatste soortgelijke boek:
9789400954601 Rings and Geometry (R. Kaya; P. Plaumann; K. Strambach)
< naar Archief...