
ISBN: 9789027721419
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In… Meer...
Indigo.ca new in stock. Verzendingskosten:zzgl. Versandkosten., exclusief verzendingskosten Details... |

ISBN: 9789027721419
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In… Meer...
Indigo.ca new in stock. Verzendingskosten:zzgl. Versandkosten., exclusief verzendingskosten Details... |

1986, ISBN: 9027721416
[EAN: 9789027721419], Neubuch, [SC: 0.0], [PU: Springer Netherlands], ALGEBRA; GROUPTHEORY; GEOMETRY; MECHANICS; MODEL; QUANTUMMECHANICS; TRANSFORMATION, Druck auf Anfrage Neuware -Specia… Meer...
ZVAB.com AHA-BUCH GmbH, Einbeck, Germany [51283250] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) Details... |

1986, ISBN: 9027721416
[EAN: 9789027721419], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. Special relativity and quantum mechanics, formulated early in the twentieth century, are the… Meer...
AbeBooks.de Book Depository hard to find, London, United Kingdom [63688905] [Rating: 5 (von 5)] NEW BOOK. Verzendingskosten: EUR 6.97 Details... |
1986, ISBN: 9789027721419
Buch, Hardcover, 1986 ed. [PU: Kluwer Academic Publishers], Kluwer Academic Publishers, 1986
lehmanns.de Verzendingskosten:Versand in 10-14 Tagen. (EUR 0.00) Details... |


Theory and Applications of the Poincaré Group by Young Suh Kim Hardcover | Indigo Chapters - nieuw boek
ISBN: 9789027721419
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In… Meer...

ISBN: 9789027721419
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In… Meer...

1986
ISBN: 9027721416
[EAN: 9789027721419], Neubuch, [SC: 0.0], [PU: Springer Netherlands], ALGEBRA; GROUPTHEORY; GEOMETRY; MECHANICS; MODEL; QUANTUMMECHANICS; TRANSFORMATION, Druck auf Anfrage Neuware -Specia… Meer...
1986, ISBN: 9027721416
[EAN: 9789027721419], Neubuch, [PU: Springer, Netherlands], Language: English. Brand new Book. Special relativity and quantum mechanics, formulated early in the twentieth century, are the… Meer...
1986, ISBN: 9789027721419
Buch, Hardcover, 1986 ed. [PU: Kluwer Academic Publishers], Kluwer Academic Publishers, 1986
Bibliografische gegevens van het best passende boek
auteur: | |
Titel: | |
ISBN: |
Gedetalleerde informatie over het boek. - Theory and Applications of the Poincaré Group by Young Suh Kim Hardcover | Indigo Chapters
EAN (ISBN-13): 9789027721419
ISBN (ISBN-10): 9027721416
Gebonden uitgave
pocket book
Verschijningsjaar: 1986
Uitgever: Young Suh Kim
352 Bladzijden
Gewicht: 0,689 kg
Taal: eng/Englisch
Boek bevindt zich in het datenbestand sinds 2007-06-04T16:51:28+02:00 (Amsterdam)
Detailpagina laatst gewijzigd op 2023-02-21T14:02:26+01:00 (Amsterdam)
ISBN/EAN: 9027721416
ISBN - alternatieve schrijfwijzen:
90-277-2141-6, 978-90-277-2141-9
alternatieve schrijfwijzen en verwante zoekwoorden:
Auteur van het boek: noz, young, kim, wigner eugene, poincare
Titel van het boek: application group theory physics, theory and applications the poincare group, group zero, poincaré, the other theory physics, fundamental theories physics, kim young
Gegevens van de uitgever
Auteur: Young Suh Kim; M. Noz
Titel: Fundamental Theories of Physics; Theory and Applications of the Poincaré Group
Uitgeverij: Springer; Springer Netherland
331 Bladzijden
Verschijningsjaar: 1986-04-30
Dordrecht; NL
Gewicht: 1,480 kg
Taal: Engels
160,49 € (DE)
164,99 € (AT)
177,00 CHF (CH)
POD
XV, 331 p.
BB; Theoretical, Mathematical and Computational Physics; Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika; Mathematische Physik; Verstehen; Algebra; Group theory; geometry; mechanics; model; quantum mechanics; transformation; Group Theory and Generalizations; Theoretical, Mathematical and Computational Physics; Group Theory and Generalizations; Gruppen und Gruppentheorie; BC; EA
I: Elements of Group Theory.- 1. Definition of a Group.- 2. Subgroups, Cosets, and Invariant Subgroups.- 3. Equivalence Classes, Orbits, and Little Groups.- 4. Representations and Representation Spaces.- 5. Properties of Matrices.- 6. Schur’s Lemma.- 7. Exercises and Problems.- II: Lie Groups and Lie Algebras.- 1. Basic Concepts of Lie Groups.- 2. Basic Theorems Concerning Lie Groups.- 3. Properties of Lie Algebras.- 4. Properties of Lie Groups.- 5. Further Theorems of Lie Groups.- 6. Exercises and Problems.- III: Theory of the Poincaré Group.- 1. Group of Lorentz Transformations.- 2. Orbits and Little Groups of the Proper Lorentz Group.- 3. Representations of the Poincaré Group.- 4. Lorentz Transformations of Wave Functions.- 5. Lorentz Transformations of Free Fields.- 6. Discrete Symmetry Operations.- 7. Exercises and Problems.- IV: Theory of Spinors.- 1. SL(2, c) as the Covering Group of the Lorentz Group.- 2. Subgroups of SL(2, c).- 3. SU (2).- 4. 5L(2, c) Spinors and Four-Vectors.- 5. Symmetries of the Dirac Equation.- 6. Exercises and Problems.- V: Covariant Harmonic Oscillator Formalism.- 1. Covariant Harmonic Oscillator Differential Equations.- 2. Normalizable Solutions of the Relativistic Oscillator Equation.- 3. Irreducible Unitary Representations of the Poincaré Group.- 4. Transformation Properties of Harmonic Oscillator Wave Functions.- 5. Harmonic Oscillators in the Four-Dimensional Euclidean Space.- 6. Moving O(4) Coordinate System.- 7. Exercises and Problems.- VI: Dirac’s Form of Relativistic Quantum Mechanics.- 1. C-Number Time-Energy Uncertainty Relation.- 2. Dirac’s Form of Relativistic Theory of “Atom ”.- 3. Dirac’s Light-Cone Coordinate System.- 4. Harmonic Oscillators in the Light-Cone Coordinate System.- 5. Lorentz-Invariant Uncertainty Relations.- 6. Exercises and Problems.- VII: Massless Particles.- 1. What is the E(2) Group?.- 2. E(2)-like Little Group for Photons.- 3. Transformation Properties of Photon Polarization Vectors.- 4. Unitary Transformation of Photon Polarization Vectors.- 5. Massless Particles with Spin 1/2.- 6. Harmonic Oscillator Wave Functions for Massless Composite Particles.- 7. Exercises and Problems.- VIII: Group Contractions.- 1. SE(2) Group as a Contraction of SO(3).- 2. E(2)-like Little Group as an Infinite-momentum/zero-mass Limit of the O(3)-like Little Group for Massive Particles.- 3. Large-momentum/zero-mass Limit of the Dirac Equation.- 4. Finite-dimensional Non-unitary Representations of the SE(2) Group.- 5. Polarization Vectors for Massless Particles with Integer Spin.- 6. Lorentz and Galilei Transformations.- 7. Group Contractions and Unitary Representations of SE(2).- 8. Exercises and Problems.- IX: SO(2, 1) and SU(1, 1).- 1. Geometry of SL(2, r) and Sp(2).- 2. Finite-dimensional Representations of SO(2, 1).- 3. Complex Angular Momentum.- 4. Unitary Representations of SU(1, 1).- 5. Exercises and Problems.- X: Homogeneous Lorentz Group.- 1. Statement of the Problem.- 2. Finite-dimensional Representations of the Homogeneous Lorentz Group.- 3. Transformation Properties of Electric and Magnetic Fields.- 4. Pseudo-unitary Representations for Dirac Spinors.- 5. Harmonic Oscillator Wave Functions in the Lorentz Coordinate System.- 6. Further Properties of the Homogeneous Lorentz Group.- 7. Concluding Remarks.- XI: Hadronic Mass Spectra.- 1. Quark Model.- 2. Three-particle Symmetry Classifications According to the Method of Dirac.- 3. Construction of Symmetrized Wave Functions.- 4. Symmetrized Products of Symmetrized Wave Functions.- 5. Spin Wave Functions for the Three-Quark System.- 6. Three-quark Unitary Spin and SU(6) Wave Functions.- 7. Three-body Spatial Wave Functions.- 8. Totally Symmetric Baryonic Wave Functions.- 9. Baryonic Mass Spectra.- 10. Mesons.- 11. Exercises and Problems.- XII: Lorentz-Dirac Deformation in High-Energy Physics.- 1. Lorentz-Dirac Deformation of Hadronic Wave Functions.- 2. Form Factors of Nucléons.- 3. Calculation of the Form Factors.- 4. Scaling Phenomenon and the Parton Picture.- 5. Covariant Harmonic Oscillators and the Parton Picture.- 6. Calculation of the Parton Distribution Function for the Proton.- 7. Jet Phenomenon.- 8. Exercises and Problems.- References.Andere boeken die eventueel grote overeenkomsten met dit boek kunnen hebben:
Laatste soortgelijke boek:
9789400945586 Theory and Applications of the Poincare Group (Young Suh Kim; M. Noz)
< naar Archief...