- 5 resultaten
laagste prijs: € 149,85, hoogste prijs: € 191,33, gemiddelde prijs: € 167,90
1
Problems of Fracture Mechanics and Fatigue - E. E. Gdoutos
bestellen
bij booklooker.de
€ 160,49
verzending: € 0,001
bestellenGesponsorde link
E. E. Gdoutos:

Problems of Fracture Mechanics and Fatigue - pocketboek

2001, ISBN: 9789048164912

[ED: Taschenbuch], [PU: Springer Netherlands], Neuware - On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or st… Meer...

Verzendingskosten:Versandkostenfrei, Versand nach Deutschland. (EUR 0.00) AHA-BUCH GmbH
2
Problems of Fracture Mechanics and Fatigue: A Solution Guide E.E. Gdoutos Editor
bestellen
bij BarnesandNoble.com
€ 169,99
bestellenGesponsorde link
Problems of Fracture Mechanics and Fatigue: A Solution Guide E.E. Gdoutos Editor - nieuw boek

ISBN: 9789048164912

On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a… Meer...

new in stock. Verzendingskosten:zzgl. Versandkosten., exclusief verzendingskosten
3
Problems of Fracture Mechanics and Fatigue: A Solution Guide
bestellen
bij Amazon.de (Intern. Bücher)
€ 149,85
verzending: € 3,001
bestellenGesponsorde link
Problems of Fracture Mechanics and Fatigue: A Solution Guide - pocketboek

2013

ISBN: 9789048164912

Springer, Taschenbuch, Auflage: 2003, 648 Seiten, Publiziert: 2013-10-04T00:00:01Z, Produktgruppe: Buch, Hersteller-Nr.: biography, 0.9 kg, Maschinenbau, Ingenieurwissenschaften, Fachbüch… Meer...

Verzendingskosten:Die angegebenen Versandkosten können von den tatsächlichen Kosten abweichen. (EUR 3.00)
4
bestellen
bij AbeBooks.de
€ 167,82
verzending: € 4,651
bestellenGesponsorde link
Emmanuel Gdoutos:
Problems of Fracture Mechanics and Fatigue : A Solution Guide - pocketboek

2010, ISBN: 9048164915

[EAN: 9789048164912], Neubuch, [PU: Springer], PRINT ON DEMAND Book; New; Fast Shipping from the UK., Books

NEW BOOK. Verzendingskosten: EUR 4.65 Ria Christie Collections, Uxbridge, United Kingdom [59718070] [Rating: 5 (von 5)]
5
bestellen
bij AbeBooks.de
€ 191,33
verzending: € 37,131
bestellenGesponsorde link
Gdoutos, E.E.:
Problems of Fracture Mechanics and Fatigue: A Solution Guide - pocketboek

2010, ISBN: 9048164915

[EAN: 9789048164912], Neubuch, [PU: Springer], Clean and crisp and new!, Books

NEW BOOK. Verzendingskosten: EUR 37.13 Welcome Back Books, Toledo, OH, U.S.A. [64434632] [Rating: 4 (von 5)]

1Aangezien sommige platformen geen verzendingsvoorwaarden meedelen en deze kunnen afhangen van het land van levering, de aankoopprijs, het gewicht en de grootte van het artikel, een eventueel lidmaatschap van het platform, een rechtstreekse levering door het platform of via een derde aanbieder (Marktplaats), enz., is het mogelijk dat de door euro-boek.nl meegedeelde verzendingskosten niet overeenstemmen met deze van het aanbiedende platform.

Bibliografische gegevens van het best passende boek

Bijzonderheden over het boek
Problems of Fracture Mechanics and Fatigue: A Solution Guide

The complexity surrounding the subjects of fracture mechanics and fatigue and the difficulties experienced by academics, researchers and engineers in comprehending the use of different approaches/solutions necessitated the writing of this book. The book, written by a selection of 15 world experts provides a step by step solution guide for a 139 problems. In its unique form, the book can provide valuable information for a selection of problems which cover the most important aspects of both fracture mechanics and fatigue. The use of references, theoretical background and accurate explanations allow the book to work on its own or as complementary material to other related titles.

Gedetalleerde informatie over het boek. - Problems of Fracture Mechanics and Fatigue: A Solution Guide


EAN (ISBN-13): 9789048164912
ISBN (ISBN-10): 9048164915
Gebonden uitgave
pocket book
Verschijningsjaar: 2010
Uitgever: Gdoutos, E. E. Springer
644 Bladzijden
Gewicht: 0,959 kg
Taal: eng/Englisch

Boek bevindt zich in het datenbestand sinds 2011-03-11T20:00:08+01:00 (Amsterdam)
Detailpagina laatst gewijzigd op 2024-02-16T14:24:25+01:00 (Amsterdam)
ISBN/EAN: 9789048164912

ISBN - alternatieve schrijfwijzen:
90-481-6491-5, 978-90-481-6491-2
alternatieve schrijfwijzen en verwante zoekwoorden:
Auteur van het boek: gdoutos, yates
Titel van het boek: non fracture, problems fracture mechanics and fatigue


Gegevens van de uitgever

Auteur: E.E. Gdoutos; C.A. Rodopoulos; J.R. Yates
Titel: Problems of Fracture Mechanics and Fatigue - A Solution Guide
Uitgeverij: Springer; Springer Netherland
618 Bladzijden
Verschijningsjaar: 2010-12-01
Dordrecht; NL
Gedrukt / Gemaakt in
Gewicht: 0,979 kg
Taal: Engels
160,49 € (DE)
164,99 € (AT)
177,00 CHF (CH)
POD
XXV, 618 p.

BC; Solid Mechanics; Hardcover, Softcover / Technik/Maschinenbau, Fertigungstechnik; Maschinenbau: Festkörpermechanik; Verstehen; beam; cracks; damage; deformation; fatigue; fracture; fracture mechanics; mechanics; stability; Building Construction and Design; Classical Mechanics; Characterization and Evaluation of Materials; Solid Mechanics; Building Construction and Design; Classical Mechanics; Characterization and Analytical Technique; Hochbau und Baustoffe; Klassische Mechanik; Werkstoffprüfung; BB

Problem 1: Airy Stress Function Method.- Problem 2: Westergaard Method for a Crack Under Concentrated Forces.- Problem 3: Westergaard Method for a Periodic Array of Cracks Under Concentrated Forces.- Problem 4: Westergaard Method for a Periodic Array of Cracks Under Uniform Stress.- Problem 5: Calculation of Stress Intensity Factors by the Westergaard Method.- Problem 6: Westergaard Method for a Crack Under Distributed Forces.- Problem 7: Westergaard Method for a Crack Under Concentrated Forces.- Problem 8: Westergaard Method for a Crack Problem.- Problem 9: Westergaard Method for a Crack Subjected to Shear Forces.- Problem 10: Calculation of Stress Intensity Factors by Superposition.- Problem 11: Calculation of Stress Intensity Factors by Integration.- Problem 12: Stress Intensity Factors for a Linear Stress Distribution.- Problem 13: Mixed-Mode Stress Intensity Factors in Cylindrical Shells.- Problem 14: Photoelastic Determination of Stress Intensity Factor KI.- Problem 15: Photoelastic Determination of Mixed-Mode Stress Intensity Factors KI and KII.- Problem 16: Application of the Method of Weight Function for the Determination of Stress Intensity Factors.- Problem 17: Approximate Determination of the Crack Tip Plastic Zone for Mode-I and Mode-II Loading.- Problem 18: Approximate Determination of the Crack Tip Plastic Zone for Mixed-Mode Loading.- Problem 19: Approximate Determination of the Crack Tip Plastic Zone According to the Tresca Yield Criterion.- Problem 20: Approximate Determination of the Crack Tip Plastic Zone According to a Pressure Modified Mises Yield Criterion.- Problem 21: Crack Tip Plastic Zone According to Irwin’s Model.- Problem 22: Effective Stress Intensity factor According to Irwin’s Model.- Problem 23: Plastic Zone at the Tip of a Semi-Infinite Crack According to the Dugdale Model.- Problem 24: Mode-III Crack Tip Plastic Zone According to the Dugdale Model.- Problem 25: Plastic Zone at the Tip of a Penny-Shaped Crack According to the Dugdale Model.- Problem 26: Calculation of Strain Energy Release Rate from Load — Displacement — Crack Area Equation.- Problem 27: Calculation of Strain Energy Release Rate for Deformation Modes I, II and III.- Problem 28: Compliance of a Plate with a Central Crack.- Problem 29: Strain Energy Release Rate for a Semi-Infinite Plate with a Crack.- Problem 30: Strain Energy Release Rate for the Short Rod Specimen.- Problem 31: Strain Energy Release Rate for the Blister Test.- Problem 32: Calculation of Stress Intensity Factors Based on Strain Energy Release Rate.- Problem 33: Critical Strain Energy Release Rate.- Problem 34: Experimental Determination of Critical Stress Intensity Factor KIc.- Problem 35: Experimental Determination of KIc.- Problem 36: Crack Stability.- Problem 37: Stable Crack Growth Based on the Resistance Curve Method.- Problem 38: Three-Point Bending Test in Brittle Materials.- Problem 39: Three-Point Bending Test in Quasi Brittle Materials.- Problem 40: Double-Cantilever Beam Test in Brittle Materials.- Problem 41: Design of a Pressure Vessel.- Problem 42: Thermal Loads in a Pipe.- Problem 43: J-integral for an Elastic Beam Partly Bonded to a Half-Plane.- Problem 44: J-integral for a Strip with a Semi-Infinite Crack.- Problem 45: J-integral for Two Partly Bonded Layers.- Problem 46: J-integral for Mode-I.- Problem 47: J-integral for Mode III.- Problem 48: Path Independent Integrals.- Problem 49: Stresses Around Notches.- Problem 50: Experimental Determination of JIc from J — Crack Growth Curves.- Problem 51: Experimental Determination of J from Potential Energy — Crack Length Curves.- Problem 52: Experimental Determination of J from Load-Displacement Records.- Problem 53: Experimental Determination of J from a Compact Tension Specimen.- Problem 54: Validity of JIc and KIc Tests.- Problem 55: Critical Crack Opening Displacement.- Problem 56: Crack Opening Displacement Design Methodology.- Problem 57: Critical Fracture Stress of a Plate with an Inclined Crack.- Problem 58: Critical Crack Length of a Plate with an Inclined Crack.- Problem 59: Failure of a Plate with an Inclined Crack.- Problem 60: Growth of a Plate with an Inclined Crack Under Biaxial Stresses.- Problem 61: Crack Growth Under Mode-II Loading.- Problem 62: Growth of a Circular Crack Loaded Perpendicularly to its Cord by Tensile Stress.- Problem 63: Growth of a Circular Crack Loaded Perpendicular to its Cord by Compressive Stress.- Problem 64: Growth of a Circular Crack Loaded Parallel to its Cord.- Problem 65: Growth of Radial Cracks Emanating from a Hole.- Problem 66: Strain Energy Density in Cuspidal Points of Rigid Inclusions.- Problem 67: Failure from Cuspidal Points of Rigid Inclusions.- Problem 68: Failure of a Plate with a Hypocycloidal Inclusion.- Problem 69: Crack Growth From Rigid Rectilinear Inclusions.- Problem 70: Crack Growth Under Pure Shear.- Problem 71: Critical Stress in Mixed Mode Fracture.- Problem 72: Critical Stress for an Interface Crack.- Problem 73: Failure of a Pressure Vessel with an Inclined Crack.- Problem 74: Failure of a Cylindrical bar with a Circular Crack.- Problem 75: Failure of a Pressure Vessel Containing a Crack with Inclined Edges.- Problem 76: Failure of a Cylindrical Bar with a Ring-Shaped Edge Crack.- Problem 77: Stable and Unstable Crack Growth.- Problem 78: Dynamic Stress Intensity Factor.- Problem 79: Crack Speed During Dynamic Crack Propagation.- Problem 80: Rayleigh Wave Speed.- Problem 81: Dilatational, Shear and Rayleigh Wave Speeds.- Problem 82: Speed and Acceleration of Crack Propagation.- Problem 83: Stress Enhanced Concentration of Hydrogen around Crack Tips.- Problem 84: Subcritical Crack Growth due to the Presence of a Deleterious Species.- Problem 1: Estimating the Lifetime of Aircraft Wing Stringers.- Problem 2: Estimating Long Life Fatigue of Components.- Problem 3: Strain Life Fatigue Estimation of Automotive Component.- Problem 4: Lifetime Estimates Using LEFM.- Problem 5: Lifetime of a Gas Pipe.- Problem 6: Pipe Failure and Lifetime Using LEFM.- Problem 7: Strain Life Fatigue Analysis of Automotive Suspension Component.- Problem 8: Fatigue Crack Growth in a Center-Cracked Thin Aluminium Plate.- Problem 9: Effect of Crack Size on Fatigue Life.- Problem 10: Effect of Fatigue Crack Length on Failure Mode of a Center-Cracked Thin Aluminium Plate.- Problem 11: Crack Propagation Under Combined Tension and Bending.- Problem 12: Influence of Mean Stress on Fatigue Crack Growth for Thin and Thick Plates.- Problem 13: Critical Fatigue Crack Growth in a Rotor Disk.- Problem 14: Applicability of LEFM to Fatigue Crack Growth.- Problem 15: Fatigue Crack Growth in the Presence of Residual Stress Field.- Problem 16: Fatigue Crack Growth in a Plate Containing an Open Hole.- Problem 17: Infinite Life for a Plate with a Semi-Circular Notch.- Problem 18: Infinite Life for a Plate with a Central Hole.- Problem 19: Crack Initiation in a Sheet Containing a Central Hole.- Problem 20: Inspection Scheduling.- Problem 21: Safety Factor of a U-Notched Plate.- Problem 22: Safety Factor and Fatigue Life Estimates.- Problem 23: Design of a Circular Bar for Safe Life.- Problem 24: Threshold and LEFM.- Problem 25: Safety Factor and Residual Strength.- Problem 26: Design of a Rotating Circular Shaft for Safe Life.- Problem 27: Safety Factor of a Notched Member Containing a Central Crack.- Problem 28: Safety Factor of a Disk Sander.- Problem 29: Short Cracks and LEFM Error.- Problem 30: Stress Ratio effect on the Kitagawa-Takahashi diagram.- Problem 31: Susceptibility of Materials to Short Cracks.- Problem 32: The effect of the Stress Ratio on the Propagation of Short Fatigue Cracks in 2024-T3.- Problem 33: Crack Growth Rate During Irregular Loading.- Problem 34: Fatigue Life Under two-stage Block Loading.- Problem 35: The Application of Wheeler’s Model.- Problem 36: Fatigue Life Under Multiple-Stage Block Loading.- Problem 37: Fatigue Life Under two-stage Block Loading Using Non-Linear Damage Accumulation.- Problem 38: Fatigue Crack Retardation Following a Single Overload.- Problem 39: Fatigue Life of a Pipe Under Variable Internal Pressure.- Problem 40: Fatigue Crack Growth Following a Single Overload Based on Crack Closure.- Problem 41: Fatigue Crack Growth Following a Single Overload Based on Crack-Tip Plasticity.- Problem 42: Fatigue Crack Growth and Residual Strength of a Double Edge Cracked Panel Under Irregular Fatigue Loading.- Problem 43: Fatigue Crack Growth Rate Under Irregular Fatigue Loading.- Problem 44: Fatigue Life of a Pressure Vessel Under Variable Internal Pressure.- Problem 45: Equibiaxial Low Cycle Fatigue.- Problem 46: Mixed Mode Fatigue Crack Growth in a Center-Cracked Panel.- Problem 47: Collapse Stress and the Dugdale’s Model.- Problem 48: Torsional Low Cycle Fatigue.- Problem 49: Fatigue Life Assessment of a Plate Containing Multiple Cracks.- Problem 50: Fatigue Crack Growth and Residual Strength in a Simple MSD Problem.

< naar Archief...