- 5 resultaten
laagste prijs: € 110,39, hoogste prijs: € 147,74, gemiddelde prijs: € 123,37
1
Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry
bestellen
bij Indigo.ca
C$ 209,95
(ongeveer € 147,74)
bestellenGesponsorde link

Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry - nieuw boek

ISBN: 9789048167883

GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, soli… Meer...

new in stock. Verzendingskosten:zzgl. Versandkosten., exclusief verzendingskosten
2
Darboux Transformations in Integrable Systems : Theory and their Applications to Geometry - Chaohao Gu
bestellen
bij ZVAB.com
€ 113,99
verzending: € 0,001
bestellenGesponsorde link

Chaohao Gu:

Darboux Transformations in Integrable Systems : Theory and their Applications to Geometry - pocketboek

2010, ISBN: 9048167884

[EAN: 9789048167883], Neubuch, [SC: 0.0], [PU: Springer Netherlands], DARBOUXTRANSFORMATIONS; MINKOWSKISPACE; DIFFERENTIALEQUATIONS; DIFFERENTIALGEOMETRY; INTEGRABLESYSTEMS; INVERSESCATTE… Meer...

NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) AHA-BUCH GmbH, Einbeck, Germany [51283250] [Rating: 5 (von 5)]
3
Darboux Transformations in Integrable Systems : Theory and their Applications to Geometry - Chaohao Gu
bestellen
bij AbeBooks.de
€ 110,39
verzending: € 0,001
bestellenGesponsorde link
Chaohao Gu:
Darboux Transformations in Integrable Systems : Theory and their Applications to Geometry - pocketboek

2010

ISBN: 9048167884

[EAN: 9789048167883], Neubuch, [PU: Springer Netherlands], DARBOUXTRANSFORMATIONS; MINKOWSKISPACE; DIFFERENTIALEQUATIONS; DIFFERENTIALGEOMETRY; INTEGRABLESYSTEMS; INVERSESCATTERINGTHEORY;… Meer...

NEW BOOK. Verzendingskosten:Versandkostenfrei. (EUR 0.00) AHA-BUCH GmbH, Einbeck, Germany [51283250] [Rating: 5 (von 5)]
4
Darboux Transformations in Integrable Systems Theory and their Applications to Geometry - Gu, Chaohao; Zhou, Zixiang; Hu, Anning
bestellen
bij Achtung-Buecher.de
€ 124,73
verzending: € 0,001
bestellenGesponsorde link
Gu, Chaohao; Zhou, Zixiang; Hu, Anning:
Darboux Transformations in Integrable Systems Theory and their Applications to Geometry - pocketboek

2010, ISBN: 9048167884

gebonden uitgave

Softcover reprint of hardcover 1st ed. 2005 Kartoniert / Broschiert Mathematische Physik, Darbouxtransformations; Minkowskispace; differentialequations; differentialgeometry; integrable… Meer...

Verzendingskosten:Versandkostenfrei innerhalb der BRD. (EUR 0.00) MARZIES.de Buch- und Medienhandel, 14621 Schönwalde-Glien
5
Darboux Transformations in Integrable Systems - Chaohao Gu; Anning Hu; Zixiang Zhou
bestellen
bij lehmanns.de
€ 119,99
verzending: € 0,001
bestellenGesponsorde link
Chaohao Gu; Anning Hu; Zixiang Zhou:
Darboux Transformations in Integrable Systems - pocketboek

2010, ISBN: 9789048167883

Theory and their Applications to Geometry, Buch, Softcover, Softcover reprint of hardcover 1st ed. 2005, [PU: Springer], Springer, 2010

Verzendingskosten:Lieferbar. (EUR 0.00)

1Aangezien sommige platformen geen verzendingsvoorwaarden meedelen en deze kunnen afhangen van het land van levering, de aankoopprijs, het gewicht en de grootte van het artikel, een eventueel lidmaatschap van het platform, een rechtstreekse levering door het platform of via een derde aanbieder (Marktplaats), enz., is het mogelijk dat de door euro-boek.nl meegedeelde verzendingskosten niet overeenstemmen met deze van het aanbiedende platform.

Bibliografische gegevens van het best passende boek

Bijzonderheden over het boek
Darboux Transformations in Integrable Systems

The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry.This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years.

Gedetalleerde informatie over het boek. - Darboux Transformations in Integrable Systems


EAN (ISBN-13): 9789048167883
ISBN (ISBN-10): 9048167884
Gebonden uitgave
pocket book
Verschijningsjaar: 2010
Uitgever: Springer
320 Bladzijden
Gewicht: 0,512 kg
Taal: eng/Englisch

Boek bevindt zich in het datenbestand sinds 2011-02-12T01:01:25+01:00 (Amsterdam)
Detailpagina laatst gewijzigd op 2023-02-08T23:09:20+01:00 (Amsterdam)
ISBN/EAN: 9789048167883

ISBN - alternatieve schrijfwijzen:
90-481-6788-4, 978-90-481-6788-3
alternatieve schrijfwijzen en verwante zoekwoorden:
Auteur van het boek: zhou, hesheng
Titel van het boek: darboux, the geometry physics, transformation geometry, geometry transformations, geometry systems


Gegevens van de uitgever

Auteur: Chaohao Gu
Titel: Mathematical Physics Studies; Darboux Transformations in Integrable Systems - Theory and their Applications to Geometry
Uitgeverij: Springer; Springer Netherland
308 Bladzijden
Verschijningsjaar: 2010-10-28
Dordrecht; NL
Gedrukt / Gemaakt in
Gewicht: 0,514 kg
Taal: Engels
109,99 € (DE)

BC; Theoretical, Mathematical and Computational Physics; Hardcover, Softcover / Physik, Astronomie/Allgemeines, Lexika; Mathematische Physik; Verstehen; Darboux transformations; Minkowski space; differential equations; differential geometry; integrable systems; inverse scattering theory; scattering theory; two-dimensional manifolds; Mathematical Methods in Physics; Differential Geometry; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Differential Geometry; Differentielle und Riemannsche Geometrie; BB

Preface.- 1. 1+1 Dimensional Integrable Systems.- 1.1 KdV equation, MKdV equation and their Darboux transformations. 1.1.1 Original Darboux transformation. 1.1.2 Darboux transformation for KdV equation. 1.1.3 Darboux transformation for MKdV equation. 1.1.4 Examples: single and double soliton solutions. 1.1.5 Relation between Darboux transformations for KdV equation and MKdV equation. 1.2 AKNS system. 1.2.1 2 × 2 AKNS system. 1.2.2 N × N AKNS system. 1.3 Darboux transformation. 1.3.1 Darboux transformation for AKNS system. 1.3.2 Invariance of equations under Darboux transformations. 1.3.3 Darboux transformations of higher degree and the theorem of permutability. 1.3.4 More results on the Darboux matrices of degree one. 1.4 KdV hierarchy, MKdV-SG hierarchy, NLS hierarchy and AKNS system with u(N) reduction. 1.4.1 KdV hierarchy. 1.4.2 MKdV-SG hierarchy. 1.4.3 NLS hierarchy. 1.4.4 AKNS system with u(N) reduction. 1.5 Darboux transformation and scattering, inverse scattering theory. 1.5.1 Outline of the scattering and inverse scattering theory for the 2 × 2 AKNS system . 1.5.2 Change of scattering data under Darboux transformations for su(2) AKNS system. 2. 2+1 Dimensional Integrable Systems.- 2.1 KP equation and its Darboux transformation. 2.2 2+1 dimensional AKNS system and DS equation. 2.3 Darboux transformation. 2.3.1 General Lax pair. 2.3.2 Darboux transformation of degree one. 2.3.3 Darboux transformation of higher degree and the theorem of permutability. 2.4 Darboux transformation and binary Darboux transformation for DS equation. 2.4.1 Darboux transformation for DSII equation. 2.4.2 Darboux transformation and binary Darboux transformation for DSI equation. 2.5 Application to 1+1 dimensional Gelfand-Dickey system. 2.6 Nonlinear constraints and Darboux transformation in 2+1 dimensions. 3. N + 1 Dimensional Integrable Systems.- 3.1 n + 1 dimensional AKNS system. 3.1.1 n + 1 dimensional AKNS system. 3.1.2Examples. 3.2 Darboux transformation and soliton solutions. 3.2.1 Darboux transformation. 3.2.2 u(N) case. 3.2.3 Soliton solutions. 3.3 A reduced system on Rn. 4. Surfaces of Constant Curvature, Bäcklund Congruences.- 4.1 Theory of surfaces in the Euclidean space R3. 4.2 Surfaces of constant negative Gauss curvature, sine-Gordon equation and Bäcklund transformations. 4.2.1 Relation between sine-Gordon equation and surface of constant negative Gauss curvature in R3. 4.2.2 Pseudo-spherical congruence. 4.2.3 Bäcklund transformation. 4.2.4 Darboux transformation. 4.2.5 Example. 4.3 Surface of constant Gauss curvature in the Minkowski space R2,1 and pseudo-spherical congruence. 4.3.1 Theory of surfaces in the Minkowski space R2,1. 4.3.2 Chebyshev coordinates for surfaces of constant Gauss curvature. 4.3.3 Pseudo-spherical congruence in R2,1. 4.3.4 Bäcklund transformation and Darboux transformation for surfaces of constant Gauss curvature in R2,1. 4.4 Orthogonal frame and Lax pair. 4.5 Surface of constant mean curvature. 4.5.1 Parallel surface in Euclidean space. 4.5.2 Construction of surfaces. 4.5.3 The case in Minkowski space. 5. Darboux Transformation and Harmonic Map.- 5.1 Definition of harmonic map and basic equations. 5.2 Harmonic maps from R2 or R1,1 to S2, H2 or S1,1. 5.3 Harmonic maps from R1,1 to U(N). 5.3.1 Riemannian metric on U(N). 5.3.2 Harmonic maps from R1,1 to U(N). 5.3.3 Single soliton solutions. 5.3.4 Multi-soliton solutions. 5.4 Harmonic maps from R2 to U(N). 5.4.1 Harmonic maps from R2 to U(N) and their Darboux transformations. 5.4.2 Soliton solutions. 5.4.3 Uniton. 5.4.4 Darboux transformation and singular Darboux transformation for unitons. 6. Generalized Self-Dual Yang-Mills and Yang-Mills-Higgs Equations.- 6.1 Generalized self-dual Yang-Mills flow. 6.1.1 Generalized self-dual Yang-Mills flow. 6.1.2 Darboux transformation. 6.1.3 Example. 6.1.4 Relation with AKNS system. 6.2 Yang-Mills-Higgs

< naar Archief...